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There has been an increasing emphasis among researchers from
both academia and industry to design synthetic strategies keeping
in view the principles of ‘Green Chemistry’.1a Adopting the
principles of green chemistry means to reduce or eliminate the
generation and use of hazardous substances. In recent years,
replacement of hazardous solvents with environmentally benign
solvents1b,c or development of solvent-free syntheses2 is one of
the major focus areas of Green Chemistry. The utility of alternative
reaction solvents such as water,3 ionic liquid,4 fluorous,5 super-
critical media,6 and polyethylene glycol (PEG)7 is rapidly growing.

The Michael addition reaction is the one of the important meth-
ods, which is widely used in organic synthesis to make carbon–car-
bon and carbon–heteroatom bonds.8 Several Lewis acid catalysts
are reported to be highly effective in Michael addition of nucleo-
philes on a,b-unsaturated carbonyl compounds.8

Recently, PEG and its solutions have been introduced as inter-
esting green solvent systems.7 These have replaced many other
‘neoteric solvents’ such as ionic liquids, super-critical carbon diox-
ide, and micellar systems whose toxicological properties, short and
long-term hazardous nature, and biodegradability have not been
established completely. Low cost, reduced flammability, reduced
toxicity, recyclability, completely nonhalogenated composition,
easily degradable, and miscibility with wide variety of organic sol-
vents are some of the properties that render PEG a benign alterna-
ll rights reserved.
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tive solvent in organic synthesis. Many organic transformations
such as substitution reactions,9 oxidation and reduction reac-
tions,10 Heck reaction,11 asymmetric dihydroxylation,12 Suzuki
cross-coupling reaction,13 Wacker reaction,14 and partial reduc-
tions of alkynes15 are accomplished using PEG as a solvent or co-
solvent. Herein, we report catalysis-free Michael addition reactions
of a,b-unsaturated carbonyl compounds in PEG-400 as a recyclable
and recoverable medium.

In our efforts to study Michael addition reactions of a,b-unsat-
urated compounds, at first, we investigated intramolecular cycliza-
tion of 20-hydroxychalcones 1 and 20-aminochalcones 3, which are
reported to afford flavanones and quinolones, respectively, in low
to moderate yields.16–20 Generally, cyclization of 1 and 3 are car-
ried out using different acids,16 bases,17and other reagents18–20 in
combination with highly volatile organic solvents and under harsh
reaction conditions. Flavanones and quinolones are rudimentary
structures for synthesis of many biologically active potent mole-
cules. Our initial attempts to cyclize 20-hydroxychalcones 1 and
20-aminochalcones 3 under conventional heating without any sol-
vent afforded only trace amounts of products 2 and 4, respectively,
along with largely unchanged starting materials. Cyclization of 1
and 3 in polar solvents DMSO and DMF also remained incomplete
under conventional heating at various temperatures.

With our recent success in the synthesis of 2-aminochromenes
in aqueous PEG-400,21 we explored cyclizations of 1 and 3 in PEG-
400, and gratifyingly found that reactions were completed without
any additives (Schemes 1 and 2). In order to optimize reaction tem-
perature, a series of experiments of 1 and 3 in PEG-400 at various
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Table 1
Cyclization of 20-hydroxychalcones 1a–g in PEG-400

Producta Ar Time (h) Yieldb (%)

2a C6H5 1.0 63
2b p-FC6H4 3.0 65
2c p-MeC6H4 2.5 62
2d p-ClC6H4 2.5 74
2e p-MeOC6H4 2.5 64
2f 2,6-Cl2C6H3 2.5 65
2g 2-Furyl 2.5 67

a Products were characterized by their 1H, 13C NMR, and HRMS spectral data.
b Yields refer to isolated pure products.

Table 2
Cyclization of 20-aminochalcones 3a–f in PEG-400

Producta Ar Time (h) Yieldb (%)

4a C6H5 12.0 91
4b p-MeC6H4 14.5 89
4c p-ClC6H4 11.0 87
4d p-BnOC6H4 11.5 88
4e 2,6-Cl2C6H3 12.0 85
4f 2-Furyl 10.5 82

a Products were characterized by their 1H, 13C NMR, and HRMS spectral data.
b Yields refer to isolated pure products.

Table 3
Reactions of a,b-unsaturated carbonyl compounds in PEG-400

Acceptor Nucleophile Producta Time
(h)

Yieldb

(%)

O

5a

C6H5NH2

NHC6H5

O

6a 5.0 92

CO2Me
5b C6H5CH2NH2

6b
CO2Me

H
NC6H5 4.5 89

5b n-BuNH2

6c
CO2Me

n-BuHN
5.5 84

5b

H
N 6d

N
CO2Me

5.5 87

5b HN N CO2MeNN
6e

6.5 89

a Products were characterized by their 1H, 13C NMR, and HRMS spectral data.
b Yields refer to isolated pure products.
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temperatures were performed, and it was found that 130 �C is the
optimum temperature to get satisfactory results.22 Attempts to
expedite cyclizations of 1 and 3 under microwave irradiation were
unsuccessful. Cyclizations of 20-amino-chalcones 3 were conver-
gent to completion, whereas in the case of 20-hydroxychalcones 1
minor amounts of unreacted starting materials were recovered.
The results of cyclizations of 1 and 3 are summarized in Tables 1
and 2.

Finally, intermolecular nucleophilic addition reactions of vari-
ous a,b-unsaturated compounds (5a,b) under similar conditions
were also investigated (Scheme 3). The literature reports on inter-
molecular Michael addition reactions of a,b-unsaturated carbonyl
O
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O
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Scheme 3.
compounds generally involve relatively expensive and hazardous
reagents under various reaction conditions. Reactions of amines
and imidazole with a,b-unsaturated carbonyl compounds (5a,b)
in PEG-400 proceeded smoothly to afford products in good yields
(Table 3, 6a–e).23–25 Recovered PEG-400 was recycled for the reac-
tion of cyclohex-2-enone 5a with aniline successively for three
times without loosing product yield. Probably, weak interaction
of PEG-400 via hydrogen bonding with the oxygen of enone in-
duces electrophilic character at the b-carbon, which is attacked
by the nucleophile.

In summary, we have accomplished nucleophilic addition reac-
tions of a variety of a,b-unsaturated compounds in PEG-400, an
easily recyclable and highly effective reaction medium, under neu-
tral conditions.
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